Laser Energy Monitor for Double-Pulsed 2-μm IPDA Lidar Application

نویسندگان

  • Tamer F. Refaat
  • Mulugeta Petros
  • Ruben Remus
  • Jirong Yu
  • Upendra N. Singh
چکیده

Integrated path differential absorption (IPDA) lidar is a remote sensing technique for monitoring different atmospheric species. The technique relies on wavelength differentiation between strong and weak absorbing features normalized to the transmitted energy. 2-μm double-pulsed IPDA lidar is best suited for atmospheric carbon dioxide measurements. In such case, the transmitter produces two successive laser pulses separated by short interval (200 μs), with low repetition rate (10Hz). Conventional laser energy monitors, based on thermal detectors, are suitable for low repetition rate single pulse lasers. Due to the short pulse interval in double-pulsed lasers, thermal energy monitors underestimate the total transmitted energy. This leads to measurement biases and errors in double-pulsed IPDA technique. The design and calibration of a 2-μm double-pulse laser energy monitor is presented. The design is based on a highspeed, extended range InGaAs pin quantum detectors suitable for separating the two pulse events. Pulse integration is applied for converting the detected pulse power into energy. Results are compared to a photo-electro-magnetic (PEM) detector for impulse response verification. Calibration included comparing the three detection technologies in singlepulsed mode, then comparing the pin and PEM detectors in double-pulsed mode. Energy monitor linearity will be addressed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High Energy Double-pulsed Ho:Tm:YLF Laser Amplifier

A high energy double-pulsed Ho:Tm:YLF 2-μm laser amplifier has been demonstrated. 600 mJ per pulse pair under Qswitch operation is achieved with the gain of 4.4. This solid-state laser source can be used as lidar transmitter for multiple lidar applications such as coherent wind and carbon dioxide measurements.

متن کامل

High Energy 2-micron Solid-State Laser Transmitter for NASA's Airborne CO2 Measurements

A 2-micron pulsed, Integrated Path Differential Absorption (IPDA) lidar instrument for ground and airborne atmospheric CO2 concentration measurements via direct detection method is being developed at NASA Langley Research Center. This instrument will provide an alternate approach to measure atmospheric CO2 concentrations with significant advantages. A high energy pulsed approach provides highpr...

متن کامل

Laser Amplifier Development for IPDA Lidar measurements of CO2 from Space

Accurate global measurements of tropospheric CO2 mixing ratios are needed to better understand the global carbon cycle and the CO2 exchange between land, oceans and atmosphere. NASA Goddard Space Flight Center (GSFC) is developing a pulsed lidar approach for an integrated path differential absorption (IPDA) lidar as a candidate for the NASA’s planned ASCENDS mission to allow global measurements...

متن کامل

Ground-based integrated path coherent differential absorption lidar measurement of CO2: foothill target return

The National Institute of Information and Communications Technology (NICT) has made a great deal of effort to develop a coherent 2 μm differential absorption and wind lidar (Co2DiaWiL) for measuring CO2 and wind speed. First, coherent Integrated Path Differential Absorption (IPDA) lidar experiments were conducted using the Co2DiaWiL and a foothill target (tree and ground surface) located about ...

متن کامل

Development of a Pulsed 2-micron Integrated Path Differential Absorption Lidar for CO2 Measurement

Atmospheric carbon dioxide (CO2) is an important greenhouse gas that significantly contributes to the carbon cycle and global radiation budget on Earth. Active remote sensing of CO2 is important to address several limitations that contend with passive sensors. A 2-micron double-pulsed, Integrated Path Differential Absorption (IPDA) lidar instrument for ground and airborne atmospheric CO2 concen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014